Artículo
Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Theoretical foundations
Fecha de publicación:
12/2016
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Mathematical Analysis
ISSN:
0036-1410
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce Lipschitz continuous and C1;1 geometric approximation and interpolation methods for sampled bounded uniformly continuous functions over compact sets and over complements of bounded open sets in Rn by using compensated convex transforms. Error estimates are provided for the approximations of bounded uniformly continuous functions, of Lipschitz functions, and of C1;1 functions. We also prove that our approximation methods, which are differentiation and integration free and not sensitive to sample type, are stable with respect to the Hausdorff distance between samples.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Zhang, Kewei; Crooks, Elaine; Orlando, Antonio; Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Theoretical foundations; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 48; 6; 12-2016; 4126-4154
Compartir
Altmétricas