Mostrar el registro sencillo del ítem
dc.contributor.author
Iglesias, Rodrigo Alejandro
dc.contributor.author
Tohmé, Fernando Abel
dc.contributor.author
Auday, Marcelo Roberto
dc.date.available
2018-09-21T23:15:59Z
dc.date.issued
2016-09
dc.identifier.citation
Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto; Contextuality Scenarios Arising from Networks of Stochastic Processes; Springer; Open Systems & Information Dynamics; 23; 3; 9-2016; 15-29
dc.identifier.issn
1230-1612
dc.identifier.uri
http://hdl.handle.net/11336/60694
dc.description.abstract
An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Contextuality
dc.subject
Empirical Models
dc.subject
Open Stochastic Processes
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Contextuality Scenarios Arising from Networks of Stochastic Processes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-18T14:23:35Z
dc.journal.volume
23
dc.journal.number
3
dc.journal.pagination
15-29
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Iglesias, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
dc.description.fil
Fil: Auday, Marcelo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Humanidades; Argentina
dc.journal.title
Open Systems & Information Dynamics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1230161216500128
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S1230161216500128
Archivos asociados