Artículo
Contextuality Scenarios Arising from Networks of Stochastic Processes
Fecha de publicación:
09/2016
Editorial:
Springer
Revista:
Open Systems & Information Dynamics
ISSN:
1230-1612
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual.
Palabras clave:
Contextuality
,
Empirical Models
,
Open Stochastic Processes
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIESS)
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto; Contextuality Scenarios Arising from Networks of Stochastic Processes; Springer; Open Systems & Information Dynamics; 23; 3; 9-2016; 15-29
Compartir
Altmétricas