Mostrar el registro sencillo del ítem
dc.contributor.author
Senger, Hermes
dc.contributor.author
Gil Costa, Graciela Verónica
dc.contributor.author
Arantes, Luciana
dc.contributor.author
Marcondes, Cesar A. C.
dc.contributor.author
Marin, Mauricio
dc.contributor.author
Sato, Liria M.
dc.contributor.author
Da Silva, Fabrício A.B.
dc.date.available
2018-09-21T20:17:14Z
dc.date.issued
2016-06
dc.identifier.citation
Senger, Hermes; Gil Costa, Graciela Verónica; Arantes, Luciana; Marcondes, Cesar A. C.; Marin, Mauricio; et al.; BSP cost and scalability analysis for MapReduce operations; John Wiley & Sons Ltd; Concurrency and Computation: Practice and Experience; 28; 8; 6-2016; 2503-2527
dc.identifier.issn
1532-0626
dc.identifier.uri
http://hdl.handle.net/11336/60660
dc.description.abstract
Data abundance poses the need for powerful and easy-to-use tools that support processing large amounts of data. MapReduce has been increasingly adopted for over a decade by many companies, and more recently, it has attracted the attention of an increasing number of researchers in several areas. One main advantage is that the complex details of parallel processing, such as complex network programming, task scheduling, data placement, and fault tolerance, are hidden in a conceptually simple framework. MapReduce is supported by mature software technologies for deployment in data centers such as Hadoop. As MapReduce becomes popular for high-performance applications, many questions arise concerning its performance and efficiency. In this paper, we demonstrated formally lower bounds on the isoefficiency function for MapReduce applications, when these applications can be modeled as BSP jobs. We also demonstrate how communication and synchronization costs can be dominant for MapReduce computations and discuss the conditions under which such scalability limits are valid. To our knowledge, this is the first study that demonstrates scalability bounds for MapReduce applications. We also discuss how some MapReduce implementations such as Hadoop can mitigate such costs to approach linear, or near-to-linear speedups.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bsp
dc.subject
Hadoop
dc.subject
Mapreduce
dc.subject
Scalability
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
BSP cost and scalability analysis for MapReduce operations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-20T13:11:43Z
dc.journal.volume
28
dc.journal.number
8
dc.journal.pagination
2503-2527
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Senger, Hermes. Universidade Federal do São Carlos; Brasil
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Arantes, Luciana. Universite Pierre et Marie Curie; Francia
dc.description.fil
Fil: Marcondes, Cesar A. C.. Universidade Federal do São Carlos; Brasil
dc.description.fil
Fil: Marin, Mauricio. Universidad de Santiago de Chile; Chile
dc.description.fil
Fil: Sato, Liria M.. Universidade de Sao Paulo; Brasil
dc.description.fil
Fil: Da Silva, Fabrício A.B.. Fundación Oswaldo Cruz; Brasil
dc.journal.title
Concurrency and Computation: Practice and Experience
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/cpe.3628
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3628
Archivos asociados