Mostrar el registro sencillo del ítem

dc.contributor.author
Senger, Hermes  
dc.contributor.author
Gil Costa, Graciela Verónica  
dc.contributor.author
Arantes, Luciana  
dc.contributor.author
Marcondes, Cesar A. C.  
dc.contributor.author
Marin, Mauricio  
dc.contributor.author
Sato, Liria M.  
dc.contributor.author
Da Silva, Fabrício A.B.  
dc.date.available
2018-09-21T20:17:14Z  
dc.date.issued
2016-06  
dc.identifier.citation
Senger, Hermes; Gil Costa, Graciela Verónica; Arantes, Luciana; Marcondes, Cesar A. C.; Marin, Mauricio; et al.; BSP cost and scalability analysis for MapReduce operations; John Wiley & Sons Ltd; Concurrency and Computation: Practice and Experience; 28; 8; 6-2016; 2503-2527  
dc.identifier.issn
1532-0626  
dc.identifier.uri
http://hdl.handle.net/11336/60660  
dc.description.abstract
Data abundance poses the need for powerful and easy-to-use tools that support processing large amounts of data. MapReduce has been increasingly adopted for over a decade by many companies, and more recently, it has attracted the attention of an increasing number of researchers in several areas. One main advantage is that the complex details of parallel processing, such as complex network programming, task scheduling, data placement, and fault tolerance, are hidden in a conceptually simple framework. MapReduce is supported by mature software technologies for deployment in data centers such as Hadoop. As MapReduce becomes popular for high-performance applications, many questions arise concerning its performance and efficiency. In this paper, we demonstrated formally lower bounds on the isoefficiency function for MapReduce applications, when these applications can be modeled as BSP jobs. We also demonstrate how communication and synchronization costs can be dominant for MapReduce computations and discuss the conditions under which such scalability limits are valid. To our knowledge, this is the first study that demonstrates scalability bounds for MapReduce applications. We also discuss how some MapReduce implementations such as Hadoop can mitigate such costs to approach linear, or near-to-linear speedups.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bsp  
dc.subject
Hadoop  
dc.subject
Mapreduce  
dc.subject
Scalability  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
BSP cost and scalability analysis for MapReduce operations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-20T13:11:43Z  
dc.journal.volume
28  
dc.journal.number
8  
dc.journal.pagination
2503-2527  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Senger, Hermes. Universidade Federal do São Carlos; Brasil  
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Arantes, Luciana. Universite Pierre et Marie Curie; Francia  
dc.description.fil
Fil: Marcondes, Cesar A. C.. Universidade Federal do São Carlos; Brasil  
dc.description.fil
Fil: Marin, Mauricio. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: Sato, Liria M.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Da Silva, Fabrício A.B.. Fundación Oswaldo Cruz; Brasil  
dc.journal.title
Concurrency and Computation: Practice and Experience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/cpe.3628  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3628