Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

BSP cost and scalability analysis for MapReduce operations

Senger, Hermes; Gil Costa, Graciela VerónicaIcon ; Arantes, Luciana; Marcondes, Cesar A. C.; Marin, Mauricio; Sato, Liria M.; Da Silva, Fabrício A.B.
Fecha de publicación: 06/2016
Editorial: John Wiley & Sons Ltd
Revista: Concurrency and Computation: Practice and Experience
ISSN: 1532-0626
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Data abundance poses the need for powerful and easy-to-use tools that support processing large amounts of data. MapReduce has been increasingly adopted for over a decade by many companies, and more recently, it has attracted the attention of an increasing number of researchers in several areas. One main advantage is that the complex details of parallel processing, such as complex network programming, task scheduling, data placement, and fault tolerance, are hidden in a conceptually simple framework. MapReduce is supported by mature software technologies for deployment in data centers such as Hadoop. As MapReduce becomes popular for high-performance applications, many questions arise concerning its performance and efficiency. In this paper, we demonstrated formally lower bounds on the isoefficiency function for MapReduce applications, when these applications can be modeled as BSP jobs. We also demonstrate how communication and synchronization costs can be dominant for MapReduce computations and discuss the conditions under which such scalability limits are valid. To our knowledge, this is the first study that demonstrates scalability bounds for MapReduce applications. We also discuss how some MapReduce implementations such as Hadoop can mitigate such costs to approach linear, or near-to-linear speedups.
Palabras clave: Bsp , Hadoop , Mapreduce , Scalability
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 456.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/60660
DOI: http://dx.doi.org/10.1002/cpe.3628
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3628
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Senger, Hermes; Gil Costa, Graciela Verónica; Arantes, Luciana; Marcondes, Cesar A. C.; Marin, Mauricio; et al.; BSP cost and scalability analysis for MapReduce operations; John Wiley & Sons Ltd; Concurrency and Computation: Practice and Experience; 28; 8; 6-2016; 2503-2527
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES