Mostrar el registro sencillo del ítem
dc.contributor.author
Garau, Eduardo Mario
dc.contributor.author
Morin, Pedro
dc.contributor.author
Zuppa, Carlos
dc.date.available
2018-09-20T19:08:55Z
dc.date.issued
2012-05
dc.identifier.citation
Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type; Global Science Press; Numerical Mathematics-theory Methods And Applications; 5; 2; 5-2012; 131-156
dc.identifier.issn
1004-8979
dc.identifier.uri
http://hdl.handle.net/11336/60505
dc.description.abstract
We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Global Science Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Adaptive Finite Element Methods
dc.subject
Optimality
dc.subject
Quasilinear Elliptic Equations
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-18T16:22:53Z
dc.journal.volume
5
dc.journal.number
2
dc.journal.pagination
131-156
dc.journal.pais
China
dc.journal.ciudad
Hong Kong
dc.description.fil
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina
dc.journal.title
Numerical Mathematics-theory Methods And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4208/nmtma.2012.m1023
Archivos asociados