Artículo
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type
Fecha de publicación:
05/2012
Editorial:
Global Science Press
Revista:
Numerical Mathematics-theory Methods And Applications
ISSN:
1004-8979
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type; Global Science Press; Numerical Mathematics-theory Methods And Applications; 5; 2; 5-2012; 131-156
Compartir
Altmétricas