Mostrar el registro sencillo del ítem
dc.contributor.author
Cook, R. Dennis
dc.contributor.author
Forzani, Liliana Maria
dc.contributor.author
Rothman, Adam
dc.date.available
2018-09-20T18:31:11Z
dc.date.issued
2012-02
dc.identifier.citation
Cook, R. Dennis; Forzani, Liliana Maria; Rothman, Adam; Estimating sufficient reductions of the predictors in abundant high-dimensional regressions; Institute of Mathematical Statistics; Annals Of Statistics, The; 40; 1; 2-2012; 353-384
dc.identifier.issn
0090-5364
dc.identifier.uri
http://hdl.handle.net/11336/60500
dc.description.abstract
We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are possible. Simulation results are presented to support the theoretical conclusion.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Mathematical Statistics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Central Subspace
dc.subject
Oracle Property
dc.subject
Principal Fitted Components
dc.subject
Sparsity
dc.subject
Spice
dc.subject
Sufficient Dimension Reduction
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-18T16:22:29Z
dc.journal.volume
40
dc.journal.number
1
dc.journal.pagination
353-384
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Rothman, Adam. University of Minnesota; Estados Unidos
dc.journal.title
Annals Of Statistics, The
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1214/11-AOS962
Archivos asociados