Artículo
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions
Fecha de publicación:
02/2012
Editorial:
Institute of Mathematical Statistics
Revista:
Annals Of Statistics, The
ISSN:
0090-5364
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are possible. Simulation results are presented to support the theoretical conclusion.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Cook, R. Dennis; Forzani, Liliana Maria; Rothman, Adam; Estimating sufficient reductions of the predictors in abundant high-dimensional regressions; Institute of Mathematical Statistics; Annals Of Statistics, The; 40; 1; 2-2012; 353-384
Compartir
Altmétricas