Mostrar el registro sencillo del ítem

dc.contributor.author
Andrada, Matias Fernando  
dc.contributor.author
Vega Hissi, Esteban Gabriel  
dc.contributor.author
Estrada, Mario Rinaldo  
dc.contributor.author
Garro Martinez, Juan Ceferino  
dc.date.available
2018-09-20T17:03:29Z  
dc.date.issued
2015-04  
dc.identifier.citation
Andrada, Matias Fernando; Vega Hissi, Esteban Gabriel; Estrada, Mario Rinaldo; Garro Martinez, Juan Ceferino; Application of k-means clustering, linear discriminant analysis and multivariate linear regression for the development of a predictive QSAR model on 5-lipoxygenase inhibitors; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 143; 4-2015; 122-129  
dc.identifier.issn
0169-7439  
dc.identifier.uri
http://hdl.handle.net/11336/60452  
dc.description.abstract
In this work, we performed a quantitative structure activity relationship (QSAR) model for a family of 5-lipoxygenase (5-LOX) inhibitors using k-means clustering and linear discriminant analysis (LDA) for the selection of training and test sets and multivariate linear regression (MLR) for the independent variable selection. With the k-means clustering method, the total set of compounds (58 derivatives of 5-Benzylidene-2-phenylthiazolinones) was divided in two clusters according to a simple discriminant function. We found that piID (conventional bond order ID number) molecular descriptor discriminates correctly 100% of the compounds of each clusters. Thirty different models divided in three series were analyzed and the series with representative training and test sets (series 3) had the most predictive models. The statistical parameters of the best model are Rtrain=0.811 and Rtest=0.801. We found that a rational selection in the setting-up of training and test sets allows to obtain the most predictive models and the random selection is sometimes unsuitable, especially, when the total set of compounds can be classified in different clusters according to structural features.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
5-Lipoxygenase Inhibitors  
dc.subject
K-Means Clustering  
dc.subject
Linear Discriminant Analysis  
dc.subject
Multivariate Linear Regression  
dc.subject
Qsar  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Application of k-means clustering, linear discriminant analysis and multivariate linear regression for the development of a predictive QSAR model on 5-lipoxygenase inhibitors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-20T13:12:55Z  
dc.journal.volume
143  
dc.journal.pagination
122-129  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Andrada, Matias Fernando. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Vega Hissi, Esteban Gabriel. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Estrada, Mario Rinaldo. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina  
dc.description.fil
Fil: Garro Martinez, Juan Ceferino. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Chemometrics and Intelligent Laboratory Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2015.03.001  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743915000593