Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Application of k-means clustering, linear discriminant analysis and multivariate linear regression for the development of a predictive QSAR model on 5-lipoxygenase inhibitors

Andrada, Matias FernandoIcon ; Vega Hissi, Esteban GabrielIcon ; Estrada, Mario Rinaldo; Garro Martinez, Juan CeferinoIcon
Fecha de publicación: 04/2015
Editorial: Elsevier Science
Revista: Chemometrics and Intelligent Laboratory Systems
ISSN: 0169-7439
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

In this work, we performed a quantitative structure activity relationship (QSAR) model for a family of 5-lipoxygenase (5-LOX) inhibitors using k-means clustering and linear discriminant analysis (LDA) for the selection of training and test sets and multivariate linear regression (MLR) for the independent variable selection. With the k-means clustering method, the total set of compounds (58 derivatives of 5-Benzylidene-2-phenylthiazolinones) was divided in two clusters according to a simple discriminant function. We found that piID (conventional bond order ID number) molecular descriptor discriminates correctly 100% of the compounds of each clusters. Thirty different models divided in three series were analyzed and the series with representative training and test sets (series 3) had the most predictive models. The statistical parameters of the best model are Rtrain=0.811 and Rtest=0.801. We found that a rational selection in the setting-up of training and test sets allows to obtain the most predictive models and the random selection is sometimes unsuitable, especially, when the total set of compounds can be classified in different clusters according to structural features.
Palabras clave: 5-Lipoxygenase Inhibitors , K-Means Clustering , Linear Discriminant Analysis , Multivariate Linear Regression , Qsar
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.727Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/60452
DOI: http://dx.doi.org/10.1016/j.chemolab.2015.03.001
URL: https://www.sciencedirect.com/science/article/pii/S0169743915000593
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos(IMIBIO-SL)
Articulos de INST. MULTIDICIPLINARIO DE INV. BIO. DE SAN LUIS
Citación
Andrada, Matias Fernando; Vega Hissi, Esteban Gabriel; Estrada, Mario Rinaldo; Garro Martinez, Juan Ceferino; Application of k-means clustering, linear discriminant analysis and multivariate linear regression for the development of a predictive QSAR model on 5-lipoxygenase inhibitors; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 143; 4-2015; 122-129
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES