Mostrar el registro sencillo del ítem
dc.contributor.author
Duran, Guillermo Alfredo
dc.contributor.author
Safe, Martin Dario
dc.contributor.author
Warnes, Xavier Sebastián
dc.date.available
2018-09-18T20:15:33Z
dc.date.issued
2017-11
dc.identifier.citation
Duran, Guillermo Alfredo; Safe, Martin Dario; Warnes, Xavier Sebastián; Neighborhood covering and independence on P4-tidy graphs and tree-cographs; Springer; Annals Of Operations Research; 11-2017; 1-32
dc.identifier.issn
0254-5330
dc.identifier.uri
http://hdl.handle.net/11336/60156
dc.description.abstract
Given a simple graph G, a set (Formula presented.) is a neighborhood cover set if every edge and vertex of G belongs to some G[v] with (Formula presented.), where G[v] denotes the subgraph of G induced by the closed neighborhood of the vertex v. Two elements of (Formula presented.) are neighborhood-independent if there is no vertex (Formula presented.) such that both elements are in G[v]. A set (Formula presented.) is neighborhood-independent if every pair of elements of S is neighborhood-independent. Let (Formula presented.) be the size of a minimum neighborhood cover set and (Formula presented.) of a maximum neighborhood-independent set. Lehel and Tuza defined neighborhood-perfect graphs G as those where the equality (Formula presented.) holds for every induced subgraph (Formula presented.) of G. In this work we prove forbidden induced subgraph characterizations of the class of neighborhood-perfect graphs, restricted to two superclasses of cographs: (Formula presented.)-tidy graphs and tree-cographs. We give as well linear-time algorithms for solving the recognition problem of neighborhood-perfect graphs and the problem of finding a minimum neighborhood cover set and a maximum neighborhood-independent set in these same classes. Finally we prove that although for complements of trees finding these optimal sets can be achieved in linear-time, for complements of bipartite graphs it is (Formula presented.)-hard.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
$$P_4$$P4-Tidy Graphs
dc.subject
Co-Bipartite Graphs
dc.subject
Forbidden Induced Subgraphs
dc.subject
Neighborhood-Perfect Graphs
dc.subject
Recognition Algorithms
dc.subject
Tree-Cographs
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Neighborhood covering and independence on P4-tidy graphs and tree-cographs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-17T19:37:14Z
dc.identifier.eissn
1572-9338
dc.journal.pagination
1-32
dc.journal.pais
Alemania
dc.description.fil
Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Safe, Martin Dario. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Warnes, Xavier Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. University of Stanford; Estados Unidos
dc.journal.title
Annals Of Operations Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10479-017-2712-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10479-017-2712-z
Archivos asociados