Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Neighborhood covering and independence on P4-tidy graphs and tree-cographs

Duran, Guillermo AlfredoIcon ; Safe, Martin DarioIcon ; Warnes, Xavier Sebastián
Fecha de publicación: 11/2017
Editorial: Springer
Revista: Annals Of Operations Research
ISSN: 0254-5330
e-ISSN: 1572-9338
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Given a simple graph G, a set (Formula presented.) is a neighborhood cover set if every edge and vertex of G belongs to some G[v] with (Formula presented.), where G[v] denotes the subgraph of G induced by the closed neighborhood of the vertex v. Two elements of (Formula presented.) are neighborhood-independent if there is no vertex (Formula presented.) such that both elements are in G[v]. A set (Formula presented.) is neighborhood-independent if every pair of elements of S is neighborhood-independent. Let (Formula presented.) be the size of a minimum neighborhood cover set and (Formula presented.) of a maximum neighborhood-independent set. Lehel and Tuza defined neighborhood-perfect graphs G as those where the equality (Formula presented.) holds for every induced subgraph (Formula presented.) of G. In this work we prove forbidden induced subgraph characterizations of the class of neighborhood-perfect graphs, restricted to two superclasses of cographs: (Formula presented.)-tidy graphs and tree-cographs. We give as well linear-time algorithms for solving the recognition problem of neighborhood-perfect graphs and the problem of finding a minimum neighborhood cover set and a maximum neighborhood-independent set in these same classes. Finally we prove that although for complements of trees finding these optimal sets can be achieved in linear-time, for complements of bipartite graphs it is (Formula presented.)-hard.
Palabras clave: $$P_4$$P4-Tidy Graphs , Co-Bipartite Graphs , Forbidden Induced Subgraphs , Neighborhood-Perfect Graphs , Recognition Algorithms , Tree-Cographs
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 274.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/60156
DOI: http://dx.doi.org/10.1007/s10479-017-2712-z
URL: https://link.springer.com/article/10.1007%2Fs10479-017-2712-z
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Duran, Guillermo Alfredo; Safe, Martin Dario; Warnes, Xavier Sebastián; Neighborhood covering and independence on P4-tidy graphs and tree-cographs; Springer; Annals Of Operations Research; 11-2017; 1-32
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES