Mostrar el registro sencillo del ítem
dc.contributor.author
Becher, Veronica Andrea
dc.contributor.author
Bugeaud, Yann
dc.contributor.author
Slaman, Theodore A.
dc.date.available
2018-09-18T18:23:31Z
dc.date.issued
2016-02
dc.identifier.citation
Becher, Veronica Andrea; Bugeaud, Yann; Slaman, Theodore A.; On simply normal numbers to different bases; Springer; Mathematische Annalen; 364; 1-2; 2-2016; 125-150
dc.identifier.issn
0025-5831
dc.identifier.uri
http://hdl.handle.net/11336/60110
dc.description.abstract
Let s be an integer greater than or equal to 2. A real number is simply normal to base s if in its base-s expansion every digit 0,1,…,s-1 occurs with the same frequency 1/s. Let S be the set of positive integers that are not perfect powers, hence S is the set {2,3,5,6,7,10,11,…}. Let M be a function from S to sets of positive integers such that, for each s in S, if m is in M(s) then each divisor of m is in M(s) and if M(s) is infinite then it is equal to the set of all positive integers. These conditions on M are necessary for there to be a real number which is simply normal to exactly the bases sm such that s is in S and m is in M(s). We show these conditions are also sufficient and further establish that the set of real numbers that satisfy them has full Hausdorff dimension. This extends a result of W. M. Schmidt (1961/1962) on normal numbers to different bases.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Normal Numbers
dc.subject
Simply Normal Numbers
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On simply normal numbers to different bases
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-13T13:15:22Z
dc.journal.volume
364
dc.journal.number
1-2
dc.journal.pagination
125-150
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Bugeaud, Yann. Université de Strasbourg; Francia
dc.description.fil
Fil: Slaman, Theodore A.. University of California at Berkeley; Estados Unidos
dc.journal.title
Mathematische Annalen
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/s00208-015-1209-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-015-1209-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.0332
Archivos asociados