Artículo
On simply normal numbers to different bases
Fecha de publicación:
02/2016
Editorial:
Springer
Revista:
Mathematische Annalen
ISSN:
0025-5831
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let s be an integer greater than or equal to 2. A real number is simply normal to base s if in its base-s expansion every digit 0,1,…,s-1 occurs with the same frequency 1/s. Let S be the set of positive integers that are not perfect powers, hence S is the set {2,3,5,6,7,10,11,…}. Let M be a function from S to sets of positive integers such that, for each s in S, if m is in M(s) then each divisor of m is in M(s) and if M(s) is infinite then it is equal to the set of all positive integers. These conditions on M are necessary for there to be a real number which is simply normal to exactly the bases sm such that s is in S and m is in M(s). We show these conditions are also sufficient and further establish that the set of real numbers that satisfy them has full Hausdorff dimension. This extends a result of W. M. Schmidt (1961/1962) on normal numbers to different bases.
Palabras clave:
Normal Numbers
,
Simply Normal Numbers
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Becher, Veronica Andrea; Bugeaud, Yann; Slaman, Theodore A.; On simply normal numbers to different bases; Springer; Mathematische Annalen; 364; 1-2; 2-2016; 125-150
Compartir
Altmétricas