Mostrar el registro sencillo del ítem
dc.contributor.author
Sánchez Miguel, Ignacio Enrique

dc.date.available
2018-09-17T21:08:12Z
dc.date.issued
2016-11-25
dc.identifier.citation
Sánchez Miguel, Ignacio Enrique; Optimal threshold estimation for binary classifiers using game theory; F1000 Research Ltd; F1000Research; 5; 2762; 25-11-2016; 1-12
dc.identifier.issn
2046-1402
dc.identifier.uri
http://hdl.handle.net/11336/60009
dc.description.abstract
Many bioinformatics algorithms can be understood as binary classifiers. They are usually compared using the area under the receiver operating characteristic (ROC) curve. On the other hand, choosing the best threshold for practical use is a complex task, due to uncertain and context-dependent skews in the abundance of positives in nature and in the yields/costs for correct/incorrect classification. We argue that considering a classifier as a player in a zero-sum game allows us to use the minimax principle from game theory to determine the optimal operating point. The proposed classifier threshold corresponds to the intersection between the ROC curve and the descending diagonal in ROC space and yields a minimax accuracy of 1-FPR. Our proposal can be readily implemented in practice, and reveals that the empirical condition for threshold estimation of “specificity equals sensitivity” maximizes robustness against uncertainties in the abundance of positives in nature and classification costs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
F1000 Research Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Game Theory
dc.subject
Roc Curve
dc.subject
Minimax Principle
dc.subject
Bionformatics
dc.subject.classification
Otras Ciencias Biológicas

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Optimal threshold estimation for binary classifiers using game theory
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-08-13T18:30:56Z
dc.journal.volume
5
dc.journal.number
2762
dc.journal.pagination
1-12
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Sánchez Miguel, Ignacio Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
dc.journal.title
F1000Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/5-2762/v3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.12688/f1000research.10114.3
Archivos asociados