Artículo
Optimal threshold estimation for binary classifiers using game theory
Fecha de publicación:
25/11/2016
Editorial:
F1000 Research Ltd
Revista:
F1000Research
ISSN:
2046-1402
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Many bioinformatics algorithms can be understood as binary classifiers. They are usually compared using the area under the receiver operating characteristic (ROC) curve. On the other hand, choosing the best threshold for practical use is a complex task, due to uncertain and context-dependent skews in the abundance of positives in nature and in the yields/costs for correct/incorrect classification. We argue that considering a classifier as a player in a zero-sum game allows us to use the minimax principle from game theory to determine the optimal operating point. The proposed classifier threshold corresponds to the intersection between the ROC curve and the descending diagonal in ROC space and yields a minimax accuracy of 1-FPR. Our proposal can be readily implemented in practice, and reveals that the empirical condition for threshold estimation of “specificity equals sensitivity” maximizes robustness against uncertainties in the abundance of positives in nature and classification costs.
Palabras clave:
Game Theory
,
Roc Curve
,
Minimax Principle
,
Bionformatics
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIBICEN)
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Citación
Sánchez Miguel, Ignacio Enrique; Optimal threshold estimation for binary classifiers using game theory; F1000 Research Ltd; F1000Research; 5; 2762; 25-11-2016; 1-12
Compartir
Altmétricas