Mostrar el registro sencillo del ítem

dc.contributor.author
Muñoz, Pedro Matías  
dc.contributor.author
Correa Perelmuter, Gabriel  
dc.contributor.author
Gaudiano, Marcos Enrique  
dc.contributor.author
Fernández, Damián  
dc.date.available
2018-09-17T20:53:22Z  
dc.date.issued
2017-11  
dc.identifier.citation
Muñoz, Pedro Matías; Correa Perelmuter, Gabriel; Gaudiano, Marcos Enrique; Fernández, Damián; Energy management control design for fuel cell hybrid electric vehicles using neural networks; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 42; 48; 11-2017; 28932-28944  
dc.identifier.issn
0360-3199  
dc.identifier.uri
http://hdl.handle.net/11336/59998  
dc.description.abstract
The design and optimization of hybrid electric vehicle powertrains can take a great benefit from mathematical models which include auxiliary management and control strategies of the energy fluxes: the use of virtual platforms reduces the expensive and time-consuming experimental activity. In this work the authors developed an online Energy Management System (EMS) controller for a FCHEV, designed to employ the same energy management over a wide range of driving style types. The controller was designed by using neural networks (NN), which were trained with the optimal power flux distribution between a fuel cell system and a battery system that minimizes the overall equivalent energy consumption. The optimal solution was obtained by carrying out a gradient-based method minimization over eight different driving cycles, and using a dynamic lumped parameter mathematical model of a FCHEV fed by hydrogen and Li-ion batteries. A quantitative and qualitative analysis was made showing the networks performances over different type of cycles. Through this analysis, a suitable classification into two cycle categories is provided, covering most of the possible driving styles with two of the developed controllers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dynamic Pem Fuel Cell Model  
dc.subject
Energy Management System Controller  
dc.subject
Fuel Cell Hybrid Electric Vehicle  
dc.subject
Hydrogen Consumption Minimization  
dc.subject
Neural Networks  
dc.subject.classification
Ingeniería del Petróleo, Energía y Combustibles  
dc.subject.classification
Ingeniería del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Energy management control design for fuel cell hybrid electric vehicles using neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-17T19:30:54Z  
dc.journal.volume
42  
dc.journal.number
48  
dc.journal.pagination
28932-28944  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Muñoz, Pedro Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Correa Perelmuter, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Catamarca. Universidad Nacional de Catamarca. Centro de Investigaciones y Transferencia de Catamarca; Argentina  
dc.description.fil
Fil: Gaudiano, Marcos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Fernández, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
International Journal of Hydrogen Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319917338855  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ijhydene.2017.09.169