Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Energy management control design for fuel cell hybrid electric vehicles using neural networks

Muñoz, Pedro MatíasIcon ; Correa Perelmuter, GabrielIcon ; Gaudiano, Marcos EnriqueIcon ; Fernández, Damián
Fecha de publicación: 11/2017
Editorial: Pergamon-Elsevier Science Ltd
Revista: International Journal of Hydrogen Energy
ISSN: 0360-3199
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería del Petróleo, Energía y Combustibles

Resumen

The design and optimization of hybrid electric vehicle powertrains can take a great benefit from mathematical models which include auxiliary management and control strategies of the energy fluxes: the use of virtual platforms reduces the expensive and time-consuming experimental activity. In this work the authors developed an online Energy Management System (EMS) controller for a FCHEV, designed to employ the same energy management over a wide range of driving style types. The controller was designed by using neural networks (NN), which were trained with the optimal power flux distribution between a fuel cell system and a battery system that minimizes the overall equivalent energy consumption. The optimal solution was obtained by carrying out a gradient-based method minimization over eight different driving cycles, and using a dynamic lumped parameter mathematical model of a FCHEV fed by hydrogen and Li-ion batteries. A quantitative and qualitative analysis was made showing the networks performances over different type of cycles. Through this analysis, a suitable classification into two cycle categories is provided, covering most of the possible driving styles with two of the developed controllers.
Palabras clave: Dynamic Pem Fuel Cell Model , Energy Management System Controller , Fuel Cell Hybrid Electric Vehicle , Hydrogen Consumption Minimization , Neural Networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.787Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/59998
URL: http://www.sciencedirect.com/science/article/pii/S0360319917338855
DOI: https://doi.org/10.1016/j.ijhydene.2017.09.169
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Muñoz, Pedro Matías; Correa Perelmuter, Gabriel; Gaudiano, Marcos Enrique; Fernández, Damián; Energy management control design for fuel cell hybrid electric vehicles using neural networks; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 42; 48; 11-2017; 28932-28944
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES