Artículo
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras
Fecha de publicación:
09/2017
Editorial:
Elsevier Science
Revista:
Journal Of Pure And Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We apply the Nash–Moser theorem for exact sequences of R. Hamilton to the context of deformations of Lie algebras and we discuss some aspects of the scope of this theorem in connection with the polynomial ideal associated to the variety of nilpotent Lie algebras. This allows us to introduce the space Hk-nil 2(g,g), and certain subspaces of it, that provide fine information about the deformations of g in the variety of k-step nilpotent Lie algebras. Then we focus on degenerations and rigidity in the variety of k-step nilpotent Lie algebras of dimension n with n≤7 and, in particular, we obtain rigid Lie algebras and rigid curves in the variety of 3-step nilpotent Lie algebras of dimension 7. We also recover some known results and point out a possible error in a published article related to this subject.
Palabras clave:
Deformations And Rigidity Lie Algebras
,
Cohomology of Lie Algebras
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Brega, Alfredo Oscar; Cagliero, Leandro Roberto; Chaves Ochoa, Augusto Enrique; The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 221; 9; 9-2017; 2250-2265
Compartir
Altmétricas