Mostrar el registro sencillo del ítem

dc.contributor.author
Rossi, Julio Daniel  
dc.contributor.author
Saintier, Nicolas Bernard Claude  
dc.date.available
2018-09-17T16:53:14Z  
dc.date.issued
2016-06  
dc.identifier.citation
Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions; University of Houston; Houston Journal Of Mathematics; 42; 2; 6-2016; 613-635  
dc.identifier.issn
0362-1588  
dc.identifier.uri
http://hdl.handle.net/11336/59878  
dc.description.abstract
We study the limit as p goes to infinity of the first non-zero eigenvalue λp of the p-Laplacian with Neumann boundary conditions in a smooth bounded domain U of Rn. We prove that λ∞:=lim λp1/p=2/diam(U), where diam(U) denotes the diameter of U with respect to the geodesic distance in U. We can think of λ∞ as the first eigenvalue of the infinity-Laplacian with Neumann boundary conditions. We also study the regularity of λ∞ as a function of the domain U proving that, under a smooth perturbation Ut of U by diffeomorphisms close to the identity, there holds that λ∞(Ut)=λ∞(U)+O(t). Although λ∞(Ut) is in general not differentiable at t=0, we provide sufficient geometric conditions for its differentiability with an explicit formula for the derivative.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
University of Houston  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Infinity Laplacian  
dc.subject
Eigenvalue  
dc.subject
Shape Derivative  
dc.subject
Neumann Boundary Condition  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T13:15:58Z  
dc.journal.volume
42  
dc.journal.number
2  
dc.journal.pagination
613-635  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Houston Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.math.uh.edu/~hjm/Vol42-2.html