Artículo
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions
Fecha de publicación:
06/2016
Editorial:
University of Houston
Revista:
Houston Journal Of Mathematics
ISSN:
0362-1588
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the limit as p goes to infinity of the first non-zero eigenvalue λp of the p-Laplacian with Neumann boundary conditions in a smooth bounded domain U of Rn. We prove that λ∞:=lim λp1/p=2/diam(U), where diam(U) denotes the diameter of U with respect to the geodesic distance in U. We can think of λ∞ as the first eigenvalue of the infinity-Laplacian with Neumann boundary conditions. We also study the regularity of λ∞ as a function of the domain U proving that, under a smooth perturbation Ut of U by diffeomorphisms close to the identity, there holds that λ∞(Ut)=λ∞(U)+O(t). Although λ∞(Ut) is in general not differentiable at t=0, we provide sufficient geometric conditions for its differentiability with an explicit formula for the derivative.
Palabras clave:
Infinity Laplacian
,
Eigenvalue
,
Shape Derivative
,
Neumann Boundary Condition
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions; University of Houston; Houston Journal Of Mathematics; 42; 2; 6-2016; 613-635
Compartir