Mostrar el registro sencillo del ítem
dc.contributor.author
Alvarez, Enrique Ernesto
dc.contributor.author
Ferrario, Julieta
dc.date.available
2018-09-14T20:49:10Z
dc.date.issued
2015-10
dc.identifier.citation
Alvarez, Enrique Ernesto; Ferrario, Julieta; Robust Differentiable Functionals in the Additive Hazards Model; Scientific Research Publishing; Open Journal of Statistics; 5; 6; 10-2015; 1-13; 60841
dc.identifier.issn
2161-718X
dc.identifier.uri
http://hdl.handle.net/11336/59798
dc.description.abstract
In this article we present a new family of estimators for the regression parameter β in the Additive Hazards Model which represents a gain in robustness not only against outliers but also against unspecific contamination schemes. They are consistent and asymptotically normal and furthermore, they have a nonzero breakdown point. In Survival Analysis the Additive Hazards Model proposes a hazard function of the form λ(t) = λ0(t) + β ′ z, where λ0(t) is a common nonparametric baseline hazard function and z is a vector of independent variables. For this model, the seminal work of Lin and Ying (1994) develops an estimator for the regression parameter β which is asymptotically normal and highly efficient. However, a potential drawback of that classical estimator is that it is very sensitive to outliers. In an attempt to gain robustness, Alvarez and Ferrarrio (2013) introduced a family of estimat ´ ors for β which are still highly efficient and asymptotically normal, but they also have bounded influence functions. Those estimators, which were developed using classical Counting Processes methodology, still retain the drawback of having a zero breakdown point. In this article we present a new family of estimators for the regression parameter β in the Additive Hazards Model which represents a gain in robustness not only against outliers but also against unspecific contamination schemes. They are consistent and asymptotically normal and furthermore, they have a nonzero breakdown point.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Scientific Research Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AnÁLisis de Supervivencia
dc.subject
EstadÍStica Robusta
dc.subject
Inferencia EstadÍStica
dc.subject
Modelos de Hazards Aditivos
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust Differentiable Functionals in the Additive Hazards Model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-13T13:12:49Z
dc.journal.volume
5
dc.journal.number
6
dc.journal.pagination
1-13; 60841
dc.journal.pais
China
dc.description.fil
Fil: Alvarez, Enrique Ernesto. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Ferrario, Julieta. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Open Journal of Statistics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4236/ojs.2015.56064
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://file.scirp.org/Html/15-1240566_60841.htm
Archivos asociados