Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Enrique Ernesto  
dc.contributor.author
Ferrario, Julieta  
dc.date.available
2018-09-14T20:49:10Z  
dc.date.issued
2015-10  
dc.identifier.citation
Alvarez, Enrique Ernesto; Ferrario, Julieta; Robust Differentiable Functionals in the Additive Hazards Model; Scientific Research Publishing; Open Journal of Statistics; 5; 6; 10-2015; 1-13; 60841  
dc.identifier.issn
2161-718X  
dc.identifier.uri
http://hdl.handle.net/11336/59798  
dc.description.abstract
In this article we present a new family of estimators for the regression parameter β in the Additive Hazards Model which represents a gain in robustness not only against outliers but also against unspecific contamination schemes. They are consistent and asymptotically normal and furthermore, they have a nonzero breakdown point. In Survival Analysis the Additive Hazards Model proposes a hazard function of the form λ(t) = λ0(t) + β ′ z, where λ0(t) is a common nonparametric baseline hazard function and z is a vector of independent variables. For this model, the seminal work of Lin and Ying (1994) develops an estimator for the regression parameter β which is asymptotically normal and highly efficient. However, a potential drawback of that classical estimator is that it is very sensitive to outliers. In an attempt to gain robustness, Alvarez and Ferrarrio (2013) introduced a family of estimat ´ ors for β which are still highly efficient and asymptotically normal, but they also have bounded influence functions. Those estimators, which were developed using classical Counting Processes methodology, still retain the drawback of having a zero breakdown point. In this article we present a new family of estimators for the regression parameter β in the Additive Hazards Model which represents a gain in robustness not only against outliers but also against unspecific contamination schemes. They are consistent and asymptotically normal and furthermore, they have a nonzero breakdown point.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Scientific Research Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AnÁLisis de Supervivencia  
dc.subject
EstadÍStica Robusta  
dc.subject
Inferencia EstadÍStica  
dc.subject
Modelos de Hazards Aditivos  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust Differentiable Functionals in the Additive Hazards Model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-13T13:12:49Z  
dc.journal.volume
5  
dc.journal.number
6  
dc.journal.pagination
1-13; 60841  
dc.journal.pais
China  
dc.description.fil
Fil: Alvarez, Enrique Ernesto. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ferrario, Julieta. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Open Journal of Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4236/ojs.2015.56064  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://file.scirp.org/Html/15-1240566_60841.htm