Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust Differentiable Functionals in the Additive Hazards Model

Alvarez, Enrique ErnestoIcon ; Ferrario, JulietaIcon
Fecha de publicación: 10/2015
Editorial: Scientific Research Publishing
Revista: Open Journal of Statistics
ISSN: 2161-718X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this article we present a new family of estimators for the regression parameter β in the Additive Hazards Model which represents a gain in robustness not only against outliers but also against unspecific contamination schemes. They are consistent and asymptotically normal and furthermore, they have a nonzero breakdown point. In Survival Analysis the Additive Hazards Model proposes a hazard function of the form λ(t) = λ0(t) + β ′ z, where λ0(t) is a common nonparametric baseline hazard function and z is a vector of independent variables. For this model, the seminal work of Lin and Ying (1994) develops an estimator for the regression parameter β which is asymptotically normal and highly efficient. However, a potential drawback of that classical estimator is that it is very sensitive to outliers. In an attempt to gain robustness, Alvarez and Ferrarrio (2013) introduced a family of estimat ´ ors for β which are still highly efficient and asymptotically normal, but they also have bounded influence functions. Those estimators, which were developed using classical Counting Processes methodology, still retain the drawback of having a zero breakdown point. In this article we present a new family of estimators for the regression parameter β in the Additive Hazards Model which represents a gain in robustness not only against outliers but also against unspecific contamination schemes. They are consistent and asymptotically normal and furthermore, they have a nonzero breakdown point.
Palabras clave: AnÁLisis de Supervivencia , EstadÍStica Robusta , Inferencia EstadÍStica , Modelos de Hazards Aditivos
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 246.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/59798
DOI: http://dx.doi.org/10.4236/ojs.2015.56064
URL: http://file.scirp.org/Html/15-1240566_60841.htm
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Alvarez, Enrique Ernesto; Ferrario, Julieta; Robust Differentiable Functionals in the Additive Hazards Model; Scientific Research Publishing; Open Journal of Statistics; 5; 6; 10-2015; 1-13; 60841
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES