Mostrar el registro sencillo del ítem

dc.contributor.author
Andrada, Adrián Marcelo  
dc.contributor.author
Raquel Villacampa  
dc.date.available
2018-09-14T20:05:23Z  
dc.date.issued
2016-12  
dc.identifier.citation
Andrada, Adrián Marcelo; Raquel Villacampa; Abelian balanced Hermitian structures on unimodular Lie algebras; Springer; Transformation Groups; 21; 4; 12-2016; 903-927  
dc.identifier.issn
1083-4362  
dc.identifier.uri
http://hdl.handle.net/11336/59788  
dc.description.abstract
Let g be a 2n-dimensional unimodular Lie algebra equipped with a Hermitian structure (J; F) such that the complex structure J is abelian and the fundamental form F is balanced. We prove that the holonomy group of the associated Bismut connection reduces to a subgroup of SU(n – k), being 2k the dimension of the center of g. We determine conditions that allow a unimodular Lie algebra to admit this particular type of structures. Moreover, we give methods to construct them in arbitrary dimensions and classify them if the Lie algebra is 8-dimensional and nilpotent.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bismut Connection  
dc.subject
Balanced Hermitian Metric  
dc.subject
Abelian Complex Structure  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Abelian balanced Hermitian structures on unimodular Lie algebras  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T19:00:57Z  
dc.journal.volume
21  
dc.journal.number
4  
dc.journal.pagination
903-927  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Andrada, Adrián Marcelo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Raquel Villacampa. Centro Universitario de la Defensa; España  
dc.journal.title
Transformation Groups  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00031-015-9352-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00031-015-9352-7