Artículo
Abelian balanced Hermitian structures on unimodular Lie algebras
Fecha de publicación:
12/2016
Editorial:
Springer
Revista:
Transformation Groups
ISSN:
1083-4362
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let g be a 2n-dimensional unimodular Lie algebra equipped with a Hermitian structure (J; F) such that the complex structure J is abelian and the fundamental form F is balanced. We prove that the holonomy group of the associated Bismut connection reduces to a subgroup of SU(n – k), being 2k the dimension of the center of g. We determine conditions that allow a unimodular Lie algebra to admit this particular type of structures. Moreover, we give methods to construct them in arbitrary dimensions and classify them if the Lie algebra is 8-dimensional and nilpotent.
Palabras clave:
Bismut Connection
,
Balanced Hermitian Metric
,
Abelian Complex Structure
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Andrada, Adrián Marcelo; Raquel Villacampa; Abelian balanced Hermitian structures on unimodular Lie algebras; Springer; Transformation Groups; 21; 4; 12-2016; 903-927
Compartir
Altmétricas