Mostrar el registro sencillo del ítem

dc.contributor.author
Bianchini, German  
dc.contributor.author
Caymes Scutari, Paola Guadalupe  
dc.contributor.author
Méndez, Miguel Ángel  
dc.date.available
2018-09-14T15:10:24Z  
dc.date.issued
2015-01  
dc.identifier.citation
Bianchini, German; Caymes Scutari, Paola Guadalupe; Méndez, Miguel Ángel; Evolutionary-Statistical System: A parallel method for improving forest fire spread prediction; Elsevier; Journal of Computational Science; 6; 1; 1-2015; 58-66  
dc.identifier.issn
1877-7503  
dc.identifier.uri
http://hdl.handle.net/11336/59681  
dc.description.abstract
Fighting fires is a very risky job, where loss of life is a real possibility. Proper training is essential. Several firemen academies offer courses and programs whose goal is to enhance the ability of fire and emergency services to deal more effectively with fire. Among the tools that can be found in the training process are fire simulators, which are used both for training and for the prediction of forest fires. In many cases, the used simulators are based on models that present a series of limitations related to the need for a large number of input parameters. Moreover, such parameters often have some degree of uncertainty due to the impossibility of measuring all of them in real time. Therefore, they have to be estimated from indirect measurements, which negatively impacts on the output of the model. In this paper we present a method which combines Statistical Analysis with Parallel Evolutionary Algorithms to improve the quality of the model output.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Forest Fire Prediction  
dc.subject
High Performance Computing  
dc.subject
Parallel Evolutionary Algorithm  
dc.subject
Parallel Processing  
dc.subject
Statistical System  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Evolutionary-Statistical System: A parallel method for improving forest fire spread prediction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T14:17:27Z  
dc.journal.volume
6  
dc.journal.number
1  
dc.journal.pagination
58-66  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bianchini, German. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan; Argentina  
dc.description.fil
Fil: Caymes Scutari, Paola Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan; Argentina  
dc.description.fil
Fil: Méndez, Miguel Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan; Argentina  
dc.journal.title
Journal of Computational Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.jocs.2014.12.001  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1877750314001628