Mostrar el registro sencillo del ítem
dc.contributor.author
Bianchini, German
dc.contributor.author
Caymes Scutari, Paola Guadalupe
dc.contributor.author
Méndez, Miguel Ángel
dc.date.available
2018-09-14T15:10:24Z
dc.date.issued
2015-01
dc.identifier.citation
Bianchini, German; Caymes Scutari, Paola Guadalupe; Méndez, Miguel Ángel; Evolutionary-Statistical System: A parallel method for improving forest fire spread prediction; Elsevier; Journal of Computational Science; 6; 1; 1-2015; 58-66
dc.identifier.issn
1877-7503
dc.identifier.uri
http://hdl.handle.net/11336/59681
dc.description.abstract
Fighting fires is a very risky job, where loss of life is a real possibility. Proper training is essential. Several firemen academies offer courses and programs whose goal is to enhance the ability of fire and emergency services to deal more effectively with fire. Among the tools that can be found in the training process are fire simulators, which are used both for training and for the prediction of forest fires. In many cases, the used simulators are based on models that present a series of limitations related to the need for a large number of input parameters. Moreover, such parameters often have some degree of uncertainty due to the impossibility of measuring all of them in real time. Therefore, they have to be estimated from indirect measurements, which negatively impacts on the output of the model. In this paper we present a method which combines Statistical Analysis with Parallel Evolutionary Algorithms to improve the quality of the model output.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Forest Fire Prediction
dc.subject
High Performance Computing
dc.subject
Parallel Evolutionary Algorithm
dc.subject
Parallel Processing
dc.subject
Statistical System
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Evolutionary-Statistical System: A parallel method for improving forest fire spread prediction
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-14T14:17:27Z
dc.journal.volume
6
dc.journal.number
1
dc.journal.pagination
58-66
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Bianchini, German. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan; Argentina
dc.description.fil
Fil: Caymes Scutari, Paola Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan; Argentina
dc.description.fil
Fil: Méndez, Miguel Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan; Argentina
dc.journal.title
Journal of Computational Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.jocs.2014.12.001
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1877750314001628
Archivos asociados