Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Evolutionary-Statistical System: A parallel method for improving forest fire spread prediction

Bianchini, German; Caymes Scutari, Paola GuadalupeIcon ; Méndez, Miguel ÁngelIcon
Fecha de publicación: 01/2015
Editorial: Elsevier
Revista: Journal of Computational Science
ISSN: 1877-7503
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Fighting fires is a very risky job, where loss of life is a real possibility. Proper training is essential. Several firemen academies offer courses and programs whose goal is to enhance the ability of fire and emergency services to deal more effectively with fire. Among the tools that can be found in the training process are fire simulators, which are used both for training and for the prediction of forest fires. In many cases, the used simulators are based on models that present a series of limitations related to the need for a large number of input parameters. Moreover, such parameters often have some degree of uncertainty due to the impossibility of measuring all of them in real time. Therefore, they have to be estimated from indirect measurements, which negatively impacts on the output of the model. In this paper we present a method which combines Statistical Analysis with Parallel Evolutionary Algorithms to improve the quality of the model output.
Palabras clave: Forest Fire Prediction , High Performance Computing , Parallel Evolutionary Algorithm , Parallel Processing , Statistical System
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.177Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/59681
DOI: https://dx.doi.org/10.1016/j.jocs.2014.12.001
URL: https://www.sciencedirect.com/science/article/pii/S1877750314001628
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Bianchini, German; Caymes Scutari, Paola Guadalupe; Méndez, Miguel Ángel; Evolutionary-Statistical System: A parallel method for improving forest fire spread prediction; Elsevier; Journal of Computational Science; 6; 1; 1-2015; 58-66
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES