Mostrar el registro sencillo del ítem

dc.contributor.author
Mora, Omar E  
dc.contributor.author
Liu, Juang Kuan  
dc.contributor.author
Lenzano, María Gabriela  
dc.contributor.author
Toth, Charles Karoly  
dc.contributor.author
Grejner Brzezinska, Dorota A.  
dc.date.available
2018-09-13T15:55:26Z  
dc.date.issued
2015-03  
dc.identifier.citation
Mora, Omar E; Liu, Juang Kuan; Lenzano, María Gabriela; Toth, Charles Karoly; Grejner Brzezinska, Dorota A.; Small Landslide Susceptibility and Hazard Assessment Based on Airborne LiDAR Data; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 81; 3-2015; 11-19  
dc.identifier.issn
0099-1112  
dc.identifier.uri
http://hdl.handle.net/11336/59516  
dc.description.abstract
Landslides are natural disasters that cause environmental and infrastructure damage worldwide. To prevent future risk posed by such events, effective methods to detect and map their hazards are needed. Traditional landslide susceptibility mapping techniques, based on field inspection, aerial photograph interpretation, and contour map analysis are often subjective, tedious, difficult to implement and may not have the spatial resolution and temporal frequency necessary to map small slides, which is the focus of this investigation. We present a methodology that is based on a Support Vector Machine (SVM) that utilizes a LiDAR-derived Digital Elevation Model (DEM) to quantify and map the topographic signatures of landslides. The algorithm employs several geomorphological features to calibrate the model and delineate between landslide and stable terrain. To evaluate the performance of the proposed algorithm, a road corridor in Zanesville, OH, was used for testing. The resulting landslide susceptibility map was validated to correctly identify 67 of the 80 mapped landslides in the independently compiled landslide inventory map of the area. These results suggest that the proposed landslide surface feature extraction method and airborne LiDAR data can be used as efficient tools for small landslide susceptibility and hazard mapping  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Amer Soc Photogrammetry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Lidar  
dc.subject
Landslide  
dc.subject
Feature Extraction  
dc.subject
Dem  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Small Landslide Susceptibility and Hazard Assessment Based on Airborne LiDAR Data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-12T13:58:07Z  
dc.journal.volume
81  
dc.journal.pagination
11-19  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Falls Church  
dc.description.fil
Fil: Mora, Omar E. Ohio State University; Estados Unidos  
dc.description.fil
Fil: Liu, Juang Kuan. Ohio State University; Estados Unidos  
dc.description.fil
Fil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. International Center For Earth Sciences; Argentina  
dc.description.fil
Fil: Toth, Charles Karoly. Ohio State University; Estados Unidos  
dc.description.fil
Fil: Grejner Brzezinska, Dorota A.. Ohio State University; Estados Unidos  
dc.journal.title
Photogrammetric Engineering And Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.14358/PERS.81.3.239  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0099111215303475