Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Small Landslide Susceptibility and Hazard Assessment Based on Airborne LiDAR Data

Mora, Omar E; Liu, Juang Kuan; Lenzano, María GabrielaIcon ; Toth, Charles Karoly; Grejner Brzezinska, Dorota A.
Fecha de publicación: 03/2015
Editorial: Amer Soc Photogrammetry
Revista: Photogrammetric Engineering And Remote Sensing
ISSN: 0099-1112
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

Landslides are natural disasters that cause environmental and infrastructure damage worldwide. To prevent future risk posed by such events, effective methods to detect and map their hazards are needed. Traditional landslide susceptibility mapping techniques, based on field inspection, aerial photograph interpretation, and contour map analysis are often subjective, tedious, difficult to implement and may not have the spatial resolution and temporal frequency necessary to map small slides, which is the focus of this investigation. We present a methodology that is based on a Support Vector Machine (SVM) that utilizes a LiDAR-derived Digital Elevation Model (DEM) to quantify and map the topographic signatures of landslides. The algorithm employs several geomorphological features to calibrate the model and delineate between landslide and stable terrain. To evaluate the performance of the proposed algorithm, a road corridor in Zanesville, OH, was used for testing. The resulting landslide susceptibility map was validated to correctly identify 67 of the 80 mapped landslides in the independently compiled landslide inventory map of the area. These results suggest that the proposed landslide surface feature extraction method and airborne LiDAR data can be used as efficient tools for small landslide susceptibility and hazard mapping
Palabras clave: Lidar , Landslide , Feature Extraction , Dem
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 469.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/59516
DOI: https://dx.doi.org/10.14358/PERS.81.3.239
URL: https://www.sciencedirect.com/science/article/pii/S0099111215303475
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Mora, Omar E; Liu, Juang Kuan; Lenzano, María Gabriela; Toth, Charles Karoly; Grejner Brzezinska, Dorota A.; Small Landslide Susceptibility and Hazard Assessment Based on Airborne LiDAR Data; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 81; 3-2015; 11-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES