Mostrar el registro sencillo del ítem

dc.contributor.author
Thomsen, Felix Sebastian Leo  
dc.contributor.author
Peña, Jaime Andrés  
dc.contributor.author
Lu, Yongtao  
dc.contributor.author
Huber, Gerd  
dc.contributor.author
Morlock, Michael  
dc.contributor.author
Glüer, Claus Christian  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.date.available
2018-09-12T18:27:02Z  
dc.date.issued
2016-12  
dc.identifier.citation
Thomsen, Felix Sebastian Leo; Peña, Jaime Andrés; Lu, Yongtao; Huber, Gerd; Morlock, Michael; et al.; A new algorithm for estimating the rod volume fraction and the trabecular thickness from in vivo computed tomography; American Association of Physicists in Medicine; Medical Physics; 43; 12; 12-2016; 6598-6607  
dc.identifier.issn
0094-2405  
dc.identifier.uri
http://hdl.handle.net/11336/59366  
dc.description.abstract
Purpose: Existing microstructure parameters are able to predict vertebral in vitro failure load, but for noisy in vivo data more complex algorithms are needed for a robust assessment. Methods: A new algorithm is proposed for the microstructural analysis of trabecular bone under in vivo quantitative computed tomography (QCT). Five fractal parameters are computed: (1) the average local fractal dimension FD, (2) its standard deviation FD.SD, (3) the fractal rod volume ratio fRV/BV, (4) the average fractal trabecular thickness fTb.Th, and (5) its coefcient of variation fTb.Th.CV. The algorithm requires neither an explicit skeletonization of the trabecular bone, nor a well-defned transition between bone and marrow phases. Two experiments were conducted to compare the fractal with established microstructural parameters. In the frst, 20 volumes-of-interest of embedded vertebrae phantoms were scanned fve times under QCT and high-resolution (HR-)QCT and once under peripheral HRQCT (HRpQCT), to derive accuracy and precision. In the second experiment, correlations between in vitro HRQCT structural parameters were obtained from 76 human T11, T12, or L1 vertebrae. In vitro fracture data were available for a subset of 17 human T12 vertebrae so that linear regression models between failure load and microstructural HRQCT parameters could be analyzed. Results: The results showed correlations of fTb.Th and fRV/BV with their nonfractal pendants trabecular thickness (Tb.Th) and respective structure model index (SMI) while higher precision and accuracy was observed on the fractal measures. Linear models of bone mineral density with two and three fractal microstructural HRQCT parameters explained 86% and 90% (adjusted R2) of the failure load and signifcantly improved the linear models based only on BMD and established standard microstructural parameters (68%-77% adjusted R2). Conclusions: The application of fractal methods may grant further insight into the study of bone quality in vivo when image resolution and quality are less than optimal for current standard methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Association of Physicists in Medicine  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Failure Load  
dc.subject
Local Fractal Dimension  
dc.subject
Qct  
dc.subject
Rod Volume Ratio  
dc.subject
Trabecular Thickness  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A new algorithm for estimating the rod volume fraction and the trabecular thickness from in vivo computed tomography  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-30T14:39:45Z  
dc.journal.volume
43  
dc.journal.number
12  
dc.journal.pagination
6598-6607  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Thomsen, Felix Sebastian Leo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.description.fil
Fil: Peña, Jaime Andrés. University Hospital Schleswig‐Holstein; Alemania  
dc.description.fil
Fil: Lu, Yongtao. Universitat Hamburg; Alemania  
dc.description.fil
Fil: Huber, Gerd. Universitat Hamburg; Alemania  
dc.description.fil
Fil: Morlock, Michael. University Hospital Schleswig‐Holstein; Alemania  
dc.description.fil
Fil: Glüer, Claus Christian. University Hospital Schleswig‐Holstein; Alemania  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.journal.title
Medical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4967479  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1118/1.4967479