Mostrar el registro sencillo del ítem

dc.contributor.author
Carrizo, Gabriel Aníbal  
dc.contributor.author
Lotito, Pablo Andres  
dc.contributor.author
Maciel, Maria Cristina  
dc.date.available
2018-09-10T17:40:39Z  
dc.date.issued
2016-09  
dc.identifier.citation
Carrizo, Gabriel Aníbal; Lotito, Pablo Andres; Maciel, Maria Cristina; Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem; Springer; Mathematical Programming; 159; 1-2; 9-2016; 339-369  
dc.identifier.issn
0025-5610  
dc.identifier.uri
http://hdl.handle.net/11336/58911  
dc.description.abstract
A trust-region-based algorithm for the nonconvex unconstrained multiobjective optimization problem is considered. It is a generalization of the algorithm proposed by Fliege et al. (SIAM J Optim 20:602–626, 2009), for the convex problem. Similarly to the scalar case, at each iteration a subproblem is solved and the step needs to be evaluated. Therefore, the notions of decrease condition and of predicted reduction are adapted to the vectorial case. A rule to update the trust region radius is introduced. Under differentiability assumptions, the algorithm converges to points satisfying a necessary condition for Pareto points and, in the convex case, to a Pareto points satisfying necessary and sufficient conditions. Furthermore, it is proved that the algorithm displays a q-quadratic rate of convergence. The global behavior of the algorithm is shown in the numerical experience reported.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Convergence  
dc.subject
Multiobjective Optimization  
dc.subject
Newton Method  
dc.subject
Trust Region  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-07T13:36:45Z  
dc.identifier.eissn
1436-4646  
dc.journal.volume
159  
dc.journal.number
1-2  
dc.journal.pagination
339-369  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Carrizo, Gabriel Aníbal. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Maciel, Maria Cristina. Universidad Nacional del Sur. Departamento de Matemática; Argentina  
dc.journal.title
Mathematical Programming  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10107-015-0962-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10107-015-0962-6