Artículo
Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem
Fecha de publicación:
09/2016
Editorial:
Springer
Revista:
Mathematical Programming
ISSN:
0025-5610
e-ISSN:
1436-4646
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A trust-region-based algorithm for the nonconvex unconstrained multiobjective optimization problem is considered. It is a generalization of the algorithm proposed by Fliege et al. (SIAM J Optim 20:602–626, 2009), for the convex problem. Similarly to the scalar case, at each iteration a subproblem is solved and the step needs to be evaluated. Therefore, the notions of decrease condition and of predicted reduction are adapted to the vectorial case. A rule to update the trust region radius is introduced. Under differentiability assumptions, the algorithm converges to points satisfying a necessary condition for Pareto points and, in the convex case, to a Pareto points satisfying necessary and sufficient conditions. Furthermore, it is proved that the algorithm displays a q-quadratic rate of convergence. The global behavior of the algorithm is shown in the numerical experience reported.
Palabras clave:
Convergence
,
Multiobjective Optimization
,
Newton Method
,
Trust Region
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Carrizo, Gabriel Aníbal; Lotito, Pablo Andres; Maciel, Maria Cristina; Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem; Springer; Mathematical Programming; 159; 1-2; 9-2016; 339-369
Compartir
Altmétricas