Mostrar el registro sencillo del ítem
dc.contributor.author
Lo Vercio, Lucas

dc.contributor.author
Orlando, José Ignacio

dc.contributor.author
del Fresno, Mirta Mariana

dc.contributor.author
Larrabide, Ignacio

dc.date.available
2018-09-07T17:39:45Z
dc.date.issued
2016-08
dc.identifier.citation
Lo Vercio, Lucas; Orlando, José Ignacio; del Fresno, Mirta Mariana; Larrabide, Ignacio; Assessment of image features for vessel wall segmentation in intravascular ultrasound images; Springer; International Journal of Computer Assisted Radiology and Surgery; 11; 8; 8-2016; 1397-1407
dc.identifier.issn
1861-6410
dc.identifier.uri
http://hdl.handle.net/11336/58728
dc.description.abstract
Background: Intravascular ultrasound (IVUS) provides axial greyscale images, allowing the assessment of the vessel wall and the surrounding tissues. Several studies have described automatic segmentation of the luminal boundary and the media–adventitia interface by means of different image features. Purpose: The aim of the present study is to evaluate the capability of some of the most relevant state-of-the-art image features for segmenting IVUS images. The study is focused on Volcano 20 MHz frames not containing plaque or containing fibrotic plaques, and, in principle, it could not be applied to frames containing shadows, calcified plaques, bifurcations and side vessels. Methods: Several image filters, textural descriptors, edge detectors, noise and spatial measures were taken into account. The assessment is based on classification techniques previously used for IVUS segmentation, assigning to each pixel a continuous likelihood value obtained using support vector machines (SVMs). To retrieve relevant features, sequential feature selection was performed guided by the area under the precision–recall curve (AUC-PR). Results: Subsets of relevant image features for lumen, plaque and surrounding tissues characterization were obtained, and SVMs trained with these features were able to accurately identify those regions. The experimental results were evaluated with respect to ground truth segmentations from a publicly available dataset, reaching values of AUC-PR up to 0.97 and Jaccard index close to 0.85. Conclusion: Noise-reduction filters and Haralick’s textural features denoted their relevance to identify lumen and background. Laws’ textural features, local binary patterns, Gabor filters and edge detectors had less relevance in the selection process.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Feature Selection
dc.subject
Ivus
dc.subject
Segmentation
dc.subject
Svm
dc.subject
Vessel Wall
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Assessment of image features for vessel wall segmentation in intravascular ultrasound images
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-07T13:51:50Z
dc.identifier.eissn
1861-6429
dc.journal.volume
11
dc.journal.number
8
dc.journal.pagination
1397-1407
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Larrabide, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
International Journal of Computer Assisted Radiology and Surgery
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11548-015-1345-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11548-015-1345-4
Archivos asociados