Mostrar el registro sencillo del ítem

dc.contributor.author
Lo Vercio, Lucas  
dc.contributor.author
Orlando, José Ignacio  
dc.contributor.author
del Fresno, Mirta Mariana  
dc.contributor.author
Larrabide, Ignacio  
dc.date.available
2018-09-07T17:39:45Z  
dc.date.issued
2016-08  
dc.identifier.citation
Lo Vercio, Lucas; Orlando, José Ignacio; del Fresno, Mirta Mariana; Larrabide, Ignacio; Assessment of image features for vessel wall segmentation in intravascular ultrasound images; Springer; International Journal of Computer Assisted Radiology and Surgery; 11; 8; 8-2016; 1397-1407  
dc.identifier.issn
1861-6410  
dc.identifier.uri
http://hdl.handle.net/11336/58728  
dc.description.abstract
Background: Intravascular ultrasound (IVUS) provides axial greyscale images, allowing the assessment of the vessel wall and the surrounding tissues. Several studies have described automatic segmentation of the luminal boundary and the media–adventitia interface by means of different image features. Purpose: The aim of the present study is to evaluate the capability of some of the most relevant state-of-the-art image features for segmenting IVUS images. The study is focused on Volcano 20 MHz frames not containing plaque or containing fibrotic plaques, and, in principle, it could not be applied to frames containing shadows, calcified plaques, bifurcations and side vessels. Methods: Several image filters, textural descriptors, edge detectors, noise and spatial measures were taken into account. The assessment is based on classification techniques previously used for IVUS segmentation, assigning to each pixel a continuous likelihood value obtained using support vector machines (SVMs). To retrieve relevant features, sequential feature selection was performed guided by the area under the precision–recall curve (AUC-PR). Results: Subsets of relevant image features for lumen, plaque and surrounding tissues characterization were obtained, and SVMs trained with these features were able to accurately identify those regions. The experimental results were evaluated with respect to ground truth segmentations from a publicly available dataset, reaching values of AUC-PR up to 0.97 and Jaccard index close to 0.85. Conclusion: Noise-reduction filters and Haralick’s textural features denoted their relevance to identify lumen and background. Laws’ textural features, local binary patterns, Gabor filters and edge detectors had less relevance in the selection process.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Feature Selection  
dc.subject
Ivus  
dc.subject
Segmentation  
dc.subject
Svm  
dc.subject
Vessel Wall  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Assessment of image features for vessel wall segmentation in intravascular ultrasound images  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-07T13:51:50Z  
dc.identifier.eissn
1861-6429  
dc.journal.volume
11  
dc.journal.number
8  
dc.journal.pagination
1397-1407  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Larrabide, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
International Journal of Computer Assisted Radiology and Surgery  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11548-015-1345-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11548-015-1345-4