Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessment of image features for vessel wall segmentation in intravascular ultrasound images

Lo Vercio, LucasIcon ; Orlando, José IgnacioIcon ; del Fresno, Mirta Mariana; Larrabide, IgnacioIcon
Fecha de publicación: 08/2016
Editorial: Springer
Revista: International Journal of Computer Assisted Radiology and Surgery
ISSN: 1861-6410
e-ISSN: 1861-6429
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Background: Intravascular ultrasound (IVUS) provides axial greyscale images, allowing the assessment of the vessel wall and the surrounding tissues. Several studies have described automatic segmentation of the luminal boundary and the media–adventitia interface by means of different image features. Purpose: The aim of the present study is to evaluate the capability of some of the most relevant state-of-the-art image features for segmenting IVUS images. The study is focused on Volcano 20 MHz frames not containing plaque or containing fibrotic plaques, and, in principle, it could not be applied to frames containing shadows, calcified plaques, bifurcations and side vessels. Methods: Several image filters, textural descriptors, edge detectors, noise and spatial measures were taken into account. The assessment is based on classification techniques previously used for IVUS segmentation, assigning to each pixel a continuous likelihood value obtained using support vector machines (SVMs). To retrieve relevant features, sequential feature selection was performed guided by the area under the precision–recall curve (AUC-PR). Results: Subsets of relevant image features for lumen, plaque and surrounding tissues characterization were obtained, and SVMs trained with these features were able to accurately identify those regions. The experimental results were evaluated with respect to ground truth segmentations from a publicly available dataset, reaching values of AUC-PR up to 0.97 and Jaccard index close to 0.85. Conclusion: Noise-reduction filters and Haralick’s textural features denoted their relevance to identify lumen and background. Laws’ textural features, local binary patterns, Gabor filters and edge detectors had less relevance in the selection process.
Palabras clave: Feature Selection , Ivus , Segmentation , Svm , Vessel Wall
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 8.402Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/58728
DOI: http://dx.doi.org/10.1007/s11548-015-1345-4
URL: https://link.springer.com/article/10.1007/s11548-015-1345-4
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Lo Vercio, Lucas; Orlando, José Ignacio; del Fresno, Mirta Mariana; Larrabide, Ignacio; Assessment of image features for vessel wall segmentation in intravascular ultrasound images; Springer; International Journal of Computer Assisted Radiology and Surgery; 11; 8; 8-2016; 1397-1407
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES