Mostrar el registro sencillo del ítem

dc.contributor.author
de Almeida, Valber Elias  
dc.contributor.author
de Araújo Gomes, Adriano  
dc.contributor.author
de Sousa Fernandes, David Douglas  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.contributor.author
Galvão, Roberto Kawakami Harrop  
dc.contributor.author
Araújo, Mario Cesar Ugulino  
dc.date.available
2018-09-07T13:58:38Z  
dc.date.issued
2018-05  
dc.identifier.citation
de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Hector Casimiro; Galvão, Roberto Kawakami Harrop; et al.; Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm; Elsevier Science; Talanta; 181; 5-2018; 38-43  
dc.identifier.issn
0039-9140  
dc.identifier.uri
http://hdl.handle.net/11336/58681  
dc.description.abstract
This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Kernel Partial Least Squares  
dc.subject
Near Infrared Spectrometry  
dc.subject
Nonlinear Multivariate Calibration  
dc.subject
Successive Projections Algorithm  
dc.subject
Sugar  
dc.subject
Variable Selection  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-06T18:44:29Z  
dc.journal.volume
181  
dc.journal.pagination
38-43  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: de Almeida, Valber Elias. Universidade Federal da Paraíba; Brasil  
dc.description.fil
Fil: de Araújo Gomes, Adriano. Universidade Federal do Sul e Sudoeste do Pará; Brasil  
dc.description.fil
Fil: de Sousa Fernandes, David Douglas. Universidade Federal da Paraíba; Brasil  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina  
dc.description.fil
Fil: Galvão, Roberto Kawakami Harrop. Instituto Tecnológico de Aeronáutica; Brasil  
dc.description.fil
Fil: Araújo, Mario Cesar Ugulino. Universidade Federal da Paraíba; Brasil  
dc.journal.title
Talanta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.talanta.2017.12.064  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914017312699