Mostrar el registro sencillo del ítem
dc.contributor.author
de Almeida, Valber Elias
dc.contributor.author
de Araújo Gomes, Adriano
dc.contributor.author
de Sousa Fernandes, David Douglas
dc.contributor.author
Goicoechea, Hector Casimiro
dc.contributor.author
Galvão, Roberto Kawakami Harrop
dc.contributor.author
Araújo, Mario Cesar Ugulino
dc.date.available
2018-09-07T13:58:38Z
dc.date.issued
2018-05
dc.identifier.citation
de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Hector Casimiro; Galvão, Roberto Kawakami Harrop; et al.; Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm; Elsevier Science; Talanta; 181; 5-2018; 38-43
dc.identifier.issn
0039-9140
dc.identifier.uri
http://hdl.handle.net/11336/58681
dc.description.abstract
This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Kernel Partial Least Squares
dc.subject
Near Infrared Spectrometry
dc.subject
Nonlinear Multivariate Calibration
dc.subject
Successive Projections Algorithm
dc.subject
Sugar
dc.subject
Variable Selection
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-06T18:44:29Z
dc.journal.volume
181
dc.journal.pagination
38-43
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: de Almeida, Valber Elias. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: de Araújo Gomes, Adriano. Universidade Federal do Sul e Sudoeste do Pará; Brasil
dc.description.fil
Fil: de Sousa Fernandes, David Douglas. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
dc.description.fil
Fil: Galvão, Roberto Kawakami Harrop. Instituto Tecnológico de Aeronáutica; Brasil
dc.description.fil
Fil: Araújo, Mario Cesar Ugulino. Universidade Federal da Paraíba; Brasil
dc.journal.title
Talanta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.talanta.2017.12.064
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914017312699
Archivos asociados