Artículo
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm
de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Hector Casimiro
; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino
Fecha de publicación:
05/2018
Editorial:
Elsevier Science
Revista:
Talanta
ISSN:
0039-9140
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Hector Casimiro; Galvão, Roberto Kawakami Harrop; et al.; Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm; Elsevier Science; Talanta; 181; 5-2018; 38-43
Compartir
Altmétricas