Mostrar el registro sencillo del ítem

dc.contributor.author
Tommasel, Antonela  
dc.contributor.author
Godoy, Daniela Lis  
dc.date.available
2018-09-06T19:43:57Z  
dc.date.issued
2017-08  
dc.identifier.citation
Tommasel, Antonela; Godoy, Daniela Lis; Learning and adapting user criteria for recommending followees in social networks; John Wiley & Sons Inc; Journal of the Association for Information Science and Technology; 68; 8; 8-2017; 1863-1874  
dc.identifier.issn
2330-1643  
dc.identifier.uri
http://hdl.handle.net/11336/58604  
dc.description.abstract
The accurate suggestion of interesting friends arises as a crucial issue in recommendation systems. The selection of friends or followees responds to several reasons whose importance might differ according to the characteristics and preferences of each user. Furthermore, those preferences might also change over time. Consequently, understanding how friends or followees are selected emerges as a key design factor of strategies for personalized recommendations. In this work, we argue that the criteria for recommending followees needs to be adapted and combined according to each user's behavior, preferences, and characteristics. A method is proposed for adapting such criteria to the characteristics of the previously selected followees. Moreover, the criteria can evolve over time to adapt to changes in user behavior, and broaden the diversity of the recommendation of potential followees based on novelty. Experimental evaluation showed that the proposed method improved precision results regarding static criteria weighting strategies and traditional rank aggregation techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Followee Recommendation  
dc.subject
Twitter  
dc.subject
Social Networks  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning and adapting user criteria for recommending followees in social networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-05T15:53:07Z  
dc.journal.volume
68  
dc.journal.number
8  
dc.journal.pagination
1863-1874  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Hoboken  
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas; Argentina  
dc.journal.title
Journal of the Association for Information Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://doi.wiley.com/10.1002/asi.23861  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/asi.23861