Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning and adapting user criteria for recommending followees in social networks

Tommasel, AntonelaIcon ; Godoy, Daniela LisIcon
Fecha de publicación: 08/2017
Editorial: John Wiley & Sons Inc
Revista: Journal of the Association for Information Science and Technology
ISSN: 2330-1643
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The accurate suggestion of interesting friends arises as a crucial issue in recommendation systems. The selection of friends or followees responds to several reasons whose importance might differ according to the characteristics and preferences of each user. Furthermore, those preferences might also change over time. Consequently, understanding how friends or followees are selected emerges as a key design factor of strategies for personalized recommendations. In this work, we argue that the criteria for recommending followees needs to be adapted and combined according to each user's behavior, preferences, and characteristics. A method is proposed for adapting such criteria to the characteristics of the previously selected followees. Moreover, the criteria can evolve over time to adapt to changes in user behavior, and broaden the diversity of the recommendation of potential followees based on novelty. Experimental evaluation showed that the proposed method improved precision results regarding static criteria weighting strategies and traditional rank aggregation techniques.
Palabras clave: Followee Recommendation , Twitter , Social Networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 760.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/58604
URL: http://doi.wiley.com/10.1002/asi.23861
DOI: http://dx.doi.org/10.1002/asi.23861
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Tommasel, Antonela; Godoy, Daniela Lis; Learning and adapting user criteria for recommending followees in social networks; John Wiley & Sons Inc; Journal of the Association for Information Science and Technology; 68; 8; 8-2017; 1863-1874
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES