Mostrar el registro sencillo del ítem
dc.contributor.author
Giordano, Pablo César
dc.contributor.author
Goicoechea, Hector Casimiro
dc.contributor.author
Olivieri, Alejandro Cesar
dc.date.available
2018-09-06T19:16:09Z
dc.date.issued
2017-12
dc.identifier.citation
Giordano, Pablo César; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; SRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 171; 12-2017; 198-206
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/58594
dc.description.abstract
SRO_ANN, a MatLab® toolbox for implementing multiple surface response optimization by artificial neural networks (SRO_ANN) is presented. Radial basis functions, a type of artificial neural networks, are applied through an easily managed graphical user interface. A detailed description of the interface is provided, including a simulated and two literature examples which allow one to show the potentiality of the software. The discussed experimental examples correspond to: (1) the maximization of the research octane number (RON) of fuels, influenced by three factors (reaction temperature, operating pressure and low liquid hourly space velocity), and (2) the optimization of the calcification process for diced tomatoes, evaluated through three different responses (calcium content, firmness and pH), which are affected by three factors (calcium concentration, solution temperature and treatment time). The results show that the application of a nonparametric tool can enhance the performance of optimization modeling tasks.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Artificial Neural Networks (Ann)
dc.subject
Desirability Function
dc.subject
Response Surface Methodology (Rsm)
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
SRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-06T18:44:09Z
dc.journal.volume
171
dc.journal.pagination
198-206
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Giordano, Pablo César. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.journal.title
Chemometrics and Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.chemolab.2017.11.004
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016974391730401X
Archivos asociados