Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

SRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions

Giordano, Pablo CésarIcon ; Goicoechea, Hector CasimiroIcon ; Olivieri, Alejandro CesarIcon
Fecha de publicación: 12/2017
Editorial: Elsevier Science
Revista: Chemometrics and Intelligent Laboratory Systems
ISSN: 0169-7439
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

SRO_ANN, a MatLab® toolbox for implementing multiple surface response optimization by artificial neural networks (SRO_ANN) is presented. Radial basis functions, a type of artificial neural networks, are applied through an easily managed graphical user interface. A detailed description of the interface is provided, including a simulated and two literature examples which allow one to show the potentiality of the software. The discussed experimental examples correspond to: (1) the maximization of the research octane number (RON) of fuels, influenced by three factors (reaction temperature, operating pressure and low liquid hourly space velocity), and (2) the optimization of the calcification process for diced tomatoes, evaluated through three different responses (calcium content, firmness and pH), which are affected by three factors (calcium concentration, solution temperature and treatment time). The results show that the application of a nonparametric tool can enhance the performance of optimization modeling tasks.
Palabras clave: Artificial Neural Networks (Ann) , Desirability Function , Response Surface Methodology (Rsm)
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.634Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/58594
DOI: https://dx.doi.org/10.1016/j.chemolab.2017.11.004
URL: https://www.sciencedirect.com/science/article/pii/S016974391730401X
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Giordano, Pablo César; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; SRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 171; 12-2017; 198-206
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES