Mostrar el registro sencillo del ítem

dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
Gieco, María Antonella  
dc.contributor.author
Tolmasky, Carlos  
dc.date.available
2018-09-06T19:16:01Z  
dc.date.issued
2017-07  
dc.identifier.citation
Forzani, Liliana Maria; Gieco, María Antonella; Tolmasky, Carlos; Likelihood ratio test for partial sphericity in high and ultra-high dimensions; Elsevier Inc; Journal Of Multivariate Analysis; 159; 7-2017; 18-38  
dc.identifier.issn
0047-259X  
dc.identifier.uri
http://hdl.handle.net/11336/58592  
dc.description.abstract
We consider, in the setting of p and n large, sample covariance matrices whose population counterparts follow a spiked population model, i.e., with the exception of the first (largest) few, all the population eigenvalues are equal. We study the asymptotic distribution of the partial maximum likelihood ratio statistic and use it to test for the dimension of the population spike subspace. Furthermore, we extend this to the ultra-high-dimensional case, i.e., p>;n. A thorough study of the power of the test gives a correction that allows us to test for the dimension of the population spike subspace even for values of the limit of p/n close to 1, a setting where other approaches have proved to be deficient.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
High-Dimensional Statistics  
dc.subject
Principal Component Analysis  
dc.subject
Random Matrix Theory  
dc.subject
Sample Covariance Matrix  
dc.subject
Spiked Population Model  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Likelihood ratio test for partial sphericity in high and ultra-high dimensions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-06T18:43:01Z  
dc.journal.volume
159  
dc.journal.pagination
18-38  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral; Argentina  
dc.description.fil
Fil: Gieco, María Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral; Argentina  
dc.description.fil
Fil: Tolmasky, Carlos. University of Minnesota; Estados Unidos  
dc.journal.title
Journal Of Multivariate Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.jmva.2017.04.001  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X17301999