Mostrar el registro sencillo del ítem
dc.contributor.author
Forzani, Liliana Maria
dc.contributor.author
Gieco, María Antonella
dc.contributor.author
Tolmasky, Carlos
dc.date.available
2018-09-06T19:16:01Z
dc.date.issued
2017-07
dc.identifier.citation
Forzani, Liliana Maria; Gieco, María Antonella; Tolmasky, Carlos; Likelihood ratio test for partial sphericity in high and ultra-high dimensions; Elsevier Inc; Journal Of Multivariate Analysis; 159; 7-2017; 18-38
dc.identifier.issn
0047-259X
dc.identifier.uri
http://hdl.handle.net/11336/58592
dc.description.abstract
We consider, in the setting of p and n large, sample covariance matrices whose population counterparts follow a spiked population model, i.e., with the exception of the first (largest) few, all the population eigenvalues are equal. We study the asymptotic distribution of the partial maximum likelihood ratio statistic and use it to test for the dimension of the population spike subspace. Furthermore, we extend this to the ultra-high-dimensional case, i.e., p>;n. A thorough study of the power of the test gives a correction that allows us to test for the dimension of the population spike subspace even for values of the limit of p/n close to 1, a setting where other approaches have proved to be deficient.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
High-Dimensional Statistics
dc.subject
Principal Component Analysis
dc.subject
Random Matrix Theory
dc.subject
Sample Covariance Matrix
dc.subject
Spiked Population Model
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Likelihood ratio test for partial sphericity in high and ultra-high dimensions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-06T18:43:01Z
dc.journal.volume
159
dc.journal.pagination
18-38
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Gieco, María Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Tolmasky, Carlos. University of Minnesota; Estados Unidos
dc.journal.title
Journal Of Multivariate Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.jmva.2017.04.001
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X17301999
Archivos asociados