Artículo
Likelihood ratio test for partial sphericity in high and ultra-high dimensions
Fecha de publicación:
07/2017
Editorial:
Elsevier Inc
Revista:
Journal Of Multivariate Analysis
ISSN:
0047-259X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider, in the setting of p and n large, sample covariance matrices whose population counterparts follow a spiked population model, i.e., with the exception of the first (largest) few, all the population eigenvalues are equal. We study the asymptotic distribution of the partial maximum likelihood ratio statistic and use it to test for the dimension of the population spike subspace. Furthermore, we extend this to the ultra-high-dimensional case, i.e., p>;n. A thorough study of the power of the test gives a correction that allows us to test for the dimension of the population spike subspace even for values of the limit of p/n close to 1, a setting where other approaches have proved to be deficient.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Forzani, Liliana Maria; Gieco, María Antonella; Tolmasky, Carlos; Likelihood ratio test for partial sphericity in high and ultra-high dimensions; Elsevier Inc; Journal Of Multivariate Analysis; 159; 7-2017; 18-38
Compartir
Altmétricas