Artículo
Social networks and genetic algorithms to choose committees with independent members
Fecha de publicación:
01/2016
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Expert Systems with Applications
ISSN:
0957-4174
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Choosing committees with independent members in social networks can be regarded as a group selection problem where independence, as the main selection criterion, can be measured by the social distance between group members. Although there are many solutions for the group selection problem in social networks, such as target set selection or community detection, none of them have proposed an approach to select committee members based on independence as group performance measure. In this work, we propose a novel approach for independent node group selection in social networks. This approach defines an independence group function and a genetic algorithm in order to optimize it. We present a case study where we build a real social network with on-line available data extracted from a Research and Development (R&D) public agency, and then we compare selected groups with existing committees of the same agency. Results show that the proposed approach can generate committees that improve group independence compared with existing committees.
Palabras clave:
Committee
,
Genetic Algorithm
,
Group Selection
,
Independence
,
Social Network
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Zamudio, Eduardo; Berdun, Luis Sebastian; Amandi, Analia Adriana; Social networks and genetic algorithms to choose committees with independent members; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 43; 1-2016; 261-270
Compartir
Altmétricas