Mostrar el registro sencillo del ítem

dc.contributor.author
Koelink, Erik  
dc.contributor.author
Román, Pablo Manuel  
dc.date.available
2018-09-04T22:36:54Z  
dc.date.issued
2016-01  
dc.identifier.citation
Koelink, Erik; Román, Pablo Manuel; Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures; Natl Acad Sci Ukraine; Symmetry, Integrability And Geometry; 12; 1-2016; 1-9  
dc.identifier.issn
1815-0659  
dc.identifier.uri
http://hdl.handle.net/11336/58337  
dc.description.abstract
A matrix-valued measure Θ reduces to measures of smaller size if there exists a constant invertible matrix M such that MΘM*is block diagonal. Equivalently, the real vector space A of all matrices T such that TΘ(X) = Θ(X)T*for any Borel set X is nontrivial. If the subspace Ahof self-adjoints elements in the commutant algebra A of Θ is nontrivial, then Θ is reducible via a unitary matrix. In this paper we prove that A is *-invariant if and only if Ah = A , i.e., every reduction of Θ can be performed via a unitary matrix. The motivation for this paper comes from families of matrix-valued polynomials related to the group SU(2)×SU(2) and its quantum analogue. In both cases the commutant algebra A = Ah⊕ iAhis of dimension two and the matrix-valued measures reduce unitarily into a 2×2 block diagonal matrix. Here we show that there is no further non-unitary reduction.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Natl Acad Sci Ukraine  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Matrix-Valued Measures  
dc.subject
Matrix-Valued Orthogonal Polynomials  
dc.subject
Reducibility  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-04T21:37:36Z  
dc.journal.volume
12  
dc.journal.pagination
1-9  
dc.journal.pais
Ucrania  
dc.description.fil
Fil: Koelink, Erik. Radboud Universiteit Nijmegen; Países Bajos  
dc.description.fil
Fil: Román, Pablo Manuel. Radboud Universiteit Nijmegen; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Symmetry, Integrability And Geometry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/SIGMA/2016/008/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.06143  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3842/SIGMA.2016.008