Artículo
Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures
Fecha de publicación:
01/2016
Editorial:
Natl Acad Sci Ukraine
Revista:
Symmetry, Integrability And Geometry
ISSN:
1815-0659
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A matrix-valued measure Θ reduces to measures of smaller size if there exists a constant invertible matrix M such that MΘM*is block diagonal. Equivalently, the real vector space A of all matrices T such that TΘ(X) = Θ(X)T*for any Borel set X is nontrivial. If the subspace Ahof self-adjoints elements in the commutant algebra A of Θ is nontrivial, then Θ is reducible via a unitary matrix. In this paper we prove that A is *-invariant if and only if Ah = A , i.e., every reduction of Θ can be performed via a unitary matrix. The motivation for this paper comes from families of matrix-valued polynomials related to the group SU(2)×SU(2) and its quantum analogue. In both cases the commutant algebra A = Ah⊕ iAhis of dimension two and the matrix-valued measures reduce unitarily into a 2×2 block diagonal matrix. Here we show that there is no further non-unitary reduction.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Koelink, Erik; Román, Pablo Manuel; Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures; Natl Acad Sci Ukraine; Symmetry, Integrability And Geometry; 12; 1-2016; 1-9
Compartir
Altmétricas