Mostrar el registro sencillo del ítem

dc.contributor.author
Melo Milanez, Karla Danielle Tavares de  
dc.contributor.author
Nóbrega, Thiago César Araújo  
dc.contributor.author
Silva Do Nascimento, Danielle  
dc.contributor.author
Galvão, Roberto Kawakami Harrop  
dc.contributor.author
Pontes, Márcio José Coelho  
dc.date.available
2018-08-22T17:16:07Z  
dc.date.issued
2017-09-01  
dc.identifier.citation
Melo Milanez, Karla Danielle Tavares de; Nóbrega, Thiago César Araújo ; Silva Do Nascimento, Danielle; Galvão, Roberto Kawakami Harrop; Pontes, Márcio José Coelho; Selection of robust variables for transfer of classification models employing the successive projections algorithm; Elsevier Science; Analytica Chimica Acta; 984; 1-9-2017; 76-85  
dc.identifier.issn
0003-2670  
dc.identifier.uri
http://hdl.handle.net/11336/56597  
dc.description.abstract
Multivariate models have been widely used in analytical problems involving quantitative and qualitative analyzes. However, there are cases in which a model is not applicable to spectra of samples obtained under new experimental conditions or in an instrument not involved in the modeling step. A solution to this problem is the transfer of multivariate models, usually performed using standardization of the spectral responses or enhancement of the robustness of the model. This present paper proposes two new criteria for selection of robust variables for classification transfer employing the successive projections algorithm (SPA). These variables are then used to build models based on linear discriminant analysis (LDA) with low sensitivity with respect to the differences between the responses of the instruments involved. For this purpose, transfer samples are included in the calculation of the cost for each subset of variables under consideration. The proposed methods are evaluated for two case studies involving identification of adulteration of extra virgin olive oil (EVOO) and hydrated ethyl alcohol fuel (HEAF) using UV–Vis and NIR spectroscopy, respectively. In both cases, similar or better classification transfer results (obtained for a test set measured on the secondary instrument) employing the two criteria were obtained in comparison with direct standardization (DS) and piecewise direct standardization (PDS). For the UV–Vis data, both proposed criteria achieved the correct classification rate (CCR) of 85%, while the best CCR obtained for the standardization methods was 81% for DS. For the NIR data, 92.5% of CCR was obtained by both criteria as well as DS. The results demonstrated the possibility of using either of the criteria proposed for building robust models as an alternative to the standardization of spectral responses for transfer of classification.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multivariate Classification Transfer  
dc.subject
Nir Spectroscopy  
dc.subject
Robust Modeling  
dc.subject
Standardization Methods  
dc.subject
Successive Projections Algorithm  
dc.subject
Uv–Ndash;Vis Spectroscopy  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Selection of robust variables for transfer of classification models employing the successive projections algorithm  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-21T13:04:10Z  
dc.journal.volume
984  
dc.journal.pagination
76-85  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Melo Milanez, Karla Danielle Tavares de. Universidade Federal da Paraíba; Brasil  
dc.description.fil
Fil: Nóbrega, Thiago César Araújo. Universidade Federal da Paraíba; Brasil  
dc.description.fil
Fil: Silva Do Nascimento, Danielle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Galvão, Roberto Kawakami Harrop. Instituto Tecnológico de Aeronáutica; Brasil  
dc.description.fil
Fil: Pontes, Márcio José Coelho. Universidade Federal da Paraíba; Brasil  
dc.journal.title
Analytica Chimica Acta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267017308413  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aca.2017.07.037