Artículo
Selection of robust variables for transfer of classification models employing the successive projections algorithm
Melo Milanez, Karla Danielle Tavares de; Nóbrega, Thiago César Araújo; Silva Do Nascimento, Danielle
; Galvão, Roberto Kawakami Harrop; Pontes, Márcio José Coelho
Fecha de publicación:
01/09/2017
Editorial:
Elsevier Science
Revista:
Analytica Chimica Acta
ISSN:
0003-2670
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Multivariate models have been widely used in analytical problems involving quantitative and qualitative analyzes. However, there are cases in which a model is not applicable to spectra of samples obtained under new experimental conditions or in an instrument not involved in the modeling step. A solution to this problem is the transfer of multivariate models, usually performed using standardization of the spectral responses or enhancement of the robustness of the model. This present paper proposes two new criteria for selection of robust variables for classification transfer employing the successive projections algorithm (SPA). These variables are then used to build models based on linear discriminant analysis (LDA) with low sensitivity with respect to the differences between the responses of the instruments involved. For this purpose, transfer samples are included in the calculation of the cost for each subset of variables under consideration. The proposed methods are evaluated for two case studies involving identification of adulteration of extra virgin olive oil (EVOO) and hydrated ethyl alcohol fuel (HEAF) using UV–Vis and NIR spectroscopy, respectively. In both cases, similar or better classification transfer results (obtained for a test set measured on the secondary instrument) employing the two criteria were obtained in comparison with direct standardization (DS) and piecewise direct standardization (PDS). For the UV–Vis data, both proposed criteria achieved the correct classification rate (CCR) of 85%, while the best CCR obtained for the standardization methods was 81% for DS. For the NIR data, 92.5% of CCR was obtained by both criteria as well as DS. The results demonstrated the possibility of using either of the criteria proposed for building robust models as an alternative to the standardization of spectral responses for transfer of classification.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Articulos de INST.DE QUIMICA DEL SUR
Citación
Melo Milanez, Karla Danielle Tavares de; Nóbrega, Thiago César Araújo ; Silva Do Nascimento, Danielle; Galvão, Roberto Kawakami Harrop; Pontes, Márcio José Coelho; Selection of robust variables for transfer of classification models employing the successive projections algorithm; Elsevier Science; Analytica Chimica Acta; 984; 1-9-2017; 76-85
Compartir
Altmétricas