Mostrar el registro sencillo del ítem

dc.contributor.author
Melo Milanez, Karla Danielle Tavares de  
dc.contributor.author
Nóbrega, Thiago César Araújo  
dc.contributor.author
Silva Do Nascimento, Danielle  
dc.contributor.author
Insausti, Matías  
dc.contributor.author
Fernández Band, Beatriz Susana  
dc.contributor.author
Pontes, Márcio José Coelho  
dc.date.available
2018-08-22T13:42:28Z  
dc.date.issued
2017-11  
dc.identifier.citation
Melo Milanez, Karla Danielle Tavares de; Nóbrega, Thiago César Araújo; Silva Do Nascimento, Danielle; Insausti, Matías; Fernández Band, Beatriz Susana; et al.; Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach; Elsevier Science; LWT - Food Science and Technology; 85; Parte A; 11-2017; 9-15  
dc.identifier.issn
0023-6438  
dc.identifier.uri
http://hdl.handle.net/11336/56511  
dc.description.abstract
This work presents a comparative study of chemometric methods used to quantify adulteration of extra virgin olive oil (EVOO) with soybean edible oil using fluorescence and UV–Vis spectroscopies. The adulteration was prepared by adding soybean edible oil in different concentrations (10, 50, 100, 150, 200, 250 and 300 g/kg). Different multivariate regression strategies were evaluated: partial least squares (PLS) using full spectrum; PLS with significant regression coefficients selected by the Jack-Knife algorithm (PLS-JK) and multiple linear regression (MLR) with previous selection of variables by stepwise algorithms (SW-MLR); successive projections algorithm (SPA-MLR); and genetic algorithm (GA-MLR). The predictive ability of the models was assessed, for each spectroscopic technique. For fluorescence spectroscopy, satisfactory prediction results were obtained for all the regression models with Root Mean Square Error of Prediction (RMSEP) values varying from 14.0 to 17.5 g/kg. When the regression methods were evaluated for UV–Vis spectra, higher RMSEP values were found, varying from 13.3 to 30.4 g/kg. The results indicate that the two spectroscopic techniques have similar performances with respect to predictive ability of the regression models.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Authenticity  
dc.subject
Multiple Linear Regression  
dc.subject
Partial Least Squares Regression  
dc.subject
Variable Selection  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-21T13:03:37Z  
dc.journal.volume
85  
dc.journal.number
Parte A  
dc.journal.pagination
9-15  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Melo Milanez, Karla Danielle Tavares de. Universidade Federal da Paraíba. Departamento de Química; Brasil  
dc.description.fil
Fil: Nóbrega, Thiago César Araújo. Universidade Federal da Paraíba. Departamento de Química; Brasil  
dc.description.fil
Fil: Silva Do Nascimento, Danielle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Insausti, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Pontes, Márcio José Coelho. Universidade Federal da Paraíba. Departamento de Química; Brasil  
dc.journal.title
LWT - Food Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0023643817304644  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.lwt.2017.06.060