Mostrar el registro sencillo del ítem

dc.contributor.author
Aimar, Hugo Alejandro  
dc.contributor.author
Gomez, Ivana Daniela  
dc.contributor.author
Morana, Federico Maximiliano  
dc.date.available
2018-08-17T15:47:52Z  
dc.date.issued
2018-05  
dc.identifier.citation
Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Morana, Federico Maximiliano; Heavy Tailed Approximate Identities and σ-stable Markov Kernels; Springer; Potential Analysis; 48; 4; 5-2018; 473-493  
dc.identifier.issn
0926-2601  
dc.identifier.uri
http://hdl.handle.net/11336/56127  
dc.description.abstract
The aim of this paper is to present some results relating the properties of stability, concentration and approximation to the identity of convolution through not necessarily mollification type families of heavy tailed Markov kernels. A particular case is provided by the kernels Kt obtained as the t mollification of Lσ(t) selected from the family ℒ={Lσ:L=e−|ξ|σ,02}, by a given function σ with values in the interval (0,2). We show that a basic Harnack type inequality, introduced by C. Calderón in the convolution case, becomes at once natural to the setting and useful to connect the concepts of stability, concentration and approximation of the identity. Some of the general results are extended to spaces of homogeneous type since most of the concepts involved in the theory are given in terms of metric and measure.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Approximate Identities  
dc.subject
Spaces of Homogeneous Type  
dc.subject
Stable Processes  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Heavy Tailed Approximate Identities and σ-stable Markov Kernels  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-16T17:22:19Z  
dc.journal.volume
48  
dc.journal.number
4  
dc.journal.pagination
473-493  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Morana, Federico Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Potential Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/s11118-017-9644-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11118-017-9644-8